Packing Plane Spanning Double Stars into Complete Geometric Graphs
نویسنده
چکیده
Consider the following problem: Given a complete geometric graph, how many plane spanning trees can be packed into its edge set? We investigate this question for plane spanning double stars instead of general spanning trees. We give a necessary, as well as a sufficient condition for the existence of packings with a given number of plane spanning double stars. We also construct complete geometric graphs with an even number of vertices that cannot be partitioned into plane spanning double stars.
منابع مشابه
Packing Plane Spanning Trees and Paths in Complete Geometric Graphs
We consider the following question: How many edgedisjoint plane spanning trees are contained in a complete geometric graph GKn on any set S of n points in general position in the plane?
متن کاملPartitions of Complete Geometric Graphs into Plane Trees
Consider the following open problem: does every complete geometric graph K2n have a partition of its edge set into n plane spanning trees? We approach this problem from three directions. First, we study the case of convex geometric graphs. It is well known that the complete convex graph K2n has a partition into n plane spanning trees. We characterise all such partitions. Second, we give a suffi...
متن کاملPacking Short Plane Spanning Trees in Complete Geometric Graphs
Given a set of points in the plane, we want to establish a connection network between these points that consists of several disjoint layers. Motivated by sensor networks, we want that each layer is spanning and plane, and that no edge is very long (when compared to the minimum length needed to obtain a spanning graph). We consider two different approaches: first we show an almost optimal centra...
متن کاملMatchings in Geometric Graphs
A geometric graph is a graph whose vertex set is a set of points in the plane and whose edge set contains straight-line segments. A matching in a graph is a subset of edges of the graph with no shared vertices. A matching is called perfect if it matches all the vertices of the underling graph. A geometric matching is a matching in a geometric graph. In this thesis, we study matching problems in...
متن کاملPacking Plane Perfect Matchings into a Point Set
Let P be a set of n points in general position in the plane (no three points on a line). A geometric graph G = (P,E) is a graph whose vertex set is P and whose edge set E is a set of straight-line segments with endpoints in P . We say that two edges of G cross each other if they have a point in common that is interior to both edges. Two edges are disjoint if they have no point in common. A subg...
متن کامل